Model 000000000000000

Financial Development, Informality, and Misallocation

David Perez-Reyna Jose M. Quintero Universidad de los Andes The University of Chicago

October 16, 2024

Motivation

- Labor informality is a salient feature of many developing economies.
 - 30% 80% in Latin America, and similar numbers for Asia, Eastern Europe.
- Middle- and low-income countries have underdeveloped financial sectors.
 - (1) Intermediate private credit to GDP was 31% for low and middle income countries.
 - 2 High income countries average 86% ratio.
- The interaction of financial frictions and labor informality is unclear.
 - (1) Labor informality creates a buffer for firms to operate in over-regulated economies
 - ② Informal firms have less access to the financial sector.

Research Question

• How do financial frictions determine the size of the informal sector?

• How do financial frictions shape firm dynamics in an informal economy?

• Do financial frictions lead to misallocation of factors in an informal economy?

This Paper

- Document facts about informality and financial frictions at the firm level.
 - (1) Static: Relate firm size to informality & financial frictions.
 - ② Dynamic: Relate firm age to informality & financial frictions.
- Build a general equilibrium model of firm dynamics with:
 - Firm heterogeneity,
 - Informal labor,
 - **③** Financial frictions.

Model

Road Map

1 Motivating Evidence

Data and Measurement

- World Bank Enterprise Surveys (WBES)
 - Repeated cross-section
 - Firm-level survey across 158 countries 207,000 firms surveyed.
 - Firm characteristics, performance measures
- Relevant variables:
 - Informality: Share of workers not reported to tax authorities.
 - Financial frictions: Access to banking system (qualitative answer).
 - Firm size: Number of full-time employees.
- IMF Financial Development Index (F.D.I)
 - Country-level panel starting on 1980.
 - Accounts for: Financial institutions, markets (size + liquidity), access & efficiency.

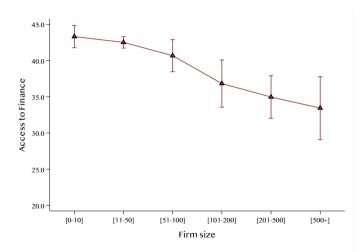
Model 000000000000000

Summary Statistics

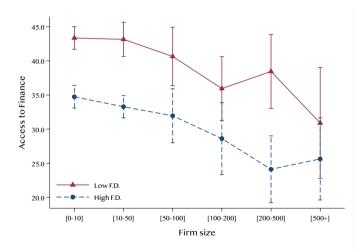
	Mean	SD	p25	p75	Obs
Access to finance	41.62	34.91	0	75	12,716
Firm size	77.52	376.65	8	44	12,695
Informality	27.88	36.87	0	50	12,716
Firm age	18.67	17.17	7	25	12,716

Notes: Sample contains information for 27 different countries for the year 2006.

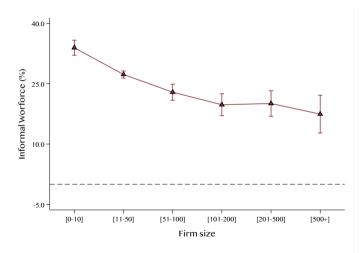
Result 1: Large Firms face less Financial Frictions



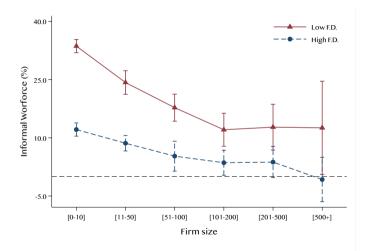
Result 1: Large Firms face less Financial Frictions



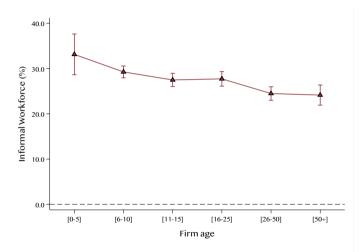
Result 2: Large Firms are less informal intensive



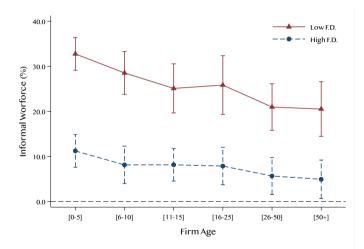
Result 2: Large Firms are less informal intensive



Result 3: Older Firms use less Informal Labor



Result 3: Older Firms use less Informal Labor



Model ●୦୦୦୦୦୦୦୦୦୦୦

Road Map

1 Motivating Evidence

Overview

- Firm dynamics model
 - Firms are heterogeneous in productivity
 - Labor is the only factor of production.
 - Firms choose quantity formal and informal labor.
- Firms face two dynamic problems
 - Investment to increase productivity
 - Accumulation of research capital.
- Sources of misallocation
 - Financial frictions \longrightarrow Borrowing constraint.
 - Tax on formal workers
 - Cost to hide informal workers.

Households and Preferences

- Time is continuous.
- ${\, \bullet \, }$ There is a unit mass of forever-lived households with discount rate $\rho.$
- Agents have logarithmic preferences over consumption

$$u(c) = \ln(c)$$

- Households choose consumption c(t) and savings s(t).
- The implied Euler equation is

$$\frac{\dot{c}(t)}{c(t)} = r(t) - \rho$$

- ${\ensuremath{\, \bullet }}$ Firms are heterogeneous in their productivity z
- Choose a bundle of labor $\{\ell_f, \ell_i\}$ to maximize:

$$\pi(z) = \max_{\ell_f, \ell_i \ge 0} z^{1-\alpha} (\ell_i + \ell_f)^{\alpha} - w(1+\tau)\ell_f - w\left(1 + \frac{b}{2}\ell_i\right)\ell_i$$

- ${\ensuremath{\, \bullet }}$ Firms are heterogeneous in their productivity z
- Choose a bundle of labor $\{\ell_f, \ell_i\}$ to maximize:

$$\pi(z) = \max_{\ell_f, \ell_i \ge 0} \underbrace{z^{1-\alpha}(\ell_i + \ell_f)^{\alpha}}_{\text{Cath Paurlax}} - w(1+\tau)\ell_f - w\left(1 + \frac{b}{2}\ell_i\right)\ell_i$$

Cobb-Douglas Production function

- ${\ensuremath{\, \bullet }}$ Firms are heterogeneous in their productivity z
- Choose a bundle of labor $\{\ell_f, \ell_i\}$ to maximize:

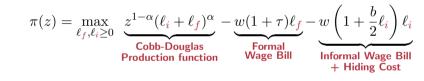
$$\pi(z) = \max_{\ell_f, \ell_i \ge 0} z^{1-\alpha} (\ell_i + \ell_f)^{\alpha} - \underbrace{w(1+\tau)\ell_f}_{\substack{\mathsf{Formal} \\ \mathsf{Wage Bill}}} - w\left(1 + \frac{b}{2}\ell_i\right)\ell_i$$

- ${\ensuremath{\, \bullet }}$ Firms are heterogeneous in their productivity z
- Choose a bundle of labor $\{\ell_f, \ell_i\}$ to maximize:

$$\pi(z) = \max_{\ell_f, \ell_i \ge 0} z^{1-\alpha} (\ell_i + \ell_f)^{\alpha} - w(1+\tau)\ell_f - \underbrace{w\left(1 + \frac{b}{2}\ell_i\right)\ell_i}_{\text{Informal Wage Bill}} + \underbrace{\text{Hiding Cost}}_{\text{Hiding Cost}}$$

 $\bullet\,$ Firms are heterogeneous in their productivity z

• Choose a bundle of labor $\{\ell_f, \ell_i\}$ to maximize:



• Implies a cut-off \bar{z} such that. • Details

1) Informal Firm: If $z \leq \overline{z}$ then $\ell_f = 0$.

② Formal Firm: If $z > \overline{z}$, both ℓ_f and ℓ_i .

Firms: Dynamics

- Firms have a stock of research capital *a*.
- Productivity follows a Brownian motion

$$\mathrm{d}z(t) = \mu(z(t), a(t)) + \sigma \mathrm{d}W(t)$$

 ${\scriptstyle \bullet }$ Investing ${\it I\!R}$ units of research capital yields a drift

$$oldsymbol{\mu} = \left(rac{2oldsymbol{R}}{ heta}
ight)^{1/2}$$

- Borrowing constraint $\mathbf{R} \leq \boldsymbol{\zeta} a$ with $\boldsymbol{\zeta} > 1$.
- $\bullet\,$ Shoe-leather cost to deposit profits d into the research capital account.

Value Function

• The value function of a firm is

$$(r+\delta)V(z,a) = \max_{\substack{0 \le R \le \zeta a \\ 0 \le d}} \left\{ \pi(z) - d - \frac{\psi}{2} d^2 + V_a(z,a)(r_a a + d - R) + \mu(z,a)V_z(z,a) + \frac{\sigma^2}{2}V_{zz}(z,a) \right\}$$

with complementary-slackness condition $V(z, a) \ge 0$.

 $\bullet\,$ Death shock $\delta\,$

Entrants

- There is a mass of entrants *m*.
- ${\ensuremath{\,\circ\,}}$ Upon entry, firms pay a fixed cost c_e and
 - (1) Get a productivity draw $z_0 \sim F_0(z)$.
 - 2 Have no initial stock of research capital $a_0 = 0$.
- Free entry condition implies

$$m = \bar{m} \exp\left(\varepsilon \int_0^\infty V(z_0, 0) \mathrm{d}F_0(z_0) - c_e\right)$$

where ε is the elasticity of new entrants.

Equilibrium

Given government policies τ , an Equilibrium is a tuple of policy functions (p.f)

$$\left\{\ell_f(z,a),\ell_i(z,a),d(z,a),V(z,a),\mu(z,a),R(z,a)\right\}$$

and prices $\{r,r_a,w\}$ plus a density function g(z,a) such that

- **①** Taking prices (r, r_a, w) as given, the p.f solve the value function V(z, a).
- 2 Taking the p.f $\mu(z,a)$ and d(z,a) as given, g(z,a) solves the KFE.
- 3 Taking the p.f and the density function g(z, a) as given, prices adjust so that
 - Labor market clears,
 - The market for research capital clears
- ④ The government has a balanced budget.

Thank You

Appendix

Static Solution

• The cut-off is described by the equation

$$\bar{z} = \left(\frac{w(1+\tau)}{\alpha}\right)^{\frac{1}{1-\alpha}} \frac{\tau}{b}$$

• Optimal labor choices are

$$\ell_i = \begin{cases} \ell_i^*(z) & \text{if } z < \bar{z} \\ \frac{\tau}{b} & \text{if } z \ge \bar{z} \end{cases} \qquad \qquad \ell_f = \begin{cases} 0 & \text{if } z < \bar{z} \\ z \left(\frac{\alpha}{w(1+\tau)}\right)^{\frac{1}{1-\alpha}} - \frac{\tau}{b} & \text{if } z \ge \bar{z} \end{cases}$$

where $\ell_i^*(z)$ is implicitly defined by the following equation

$$\frac{\alpha z^{1-\alpha}}{w} = (1 + b\ell_i^*(z))\,\ell_i^*(z)^{1-\alpha}.$$

000

Back

Kolmogorov Forward Equation

• The Kolmogorov Forward Equation (KFE) for $z \ge z_0$

$$egin{aligned} rac{\partial g(z,a,t)}{\partial t} &= -\partial_a[d(z,a)g(z,a)] \ &-\partial_z[\mu(z,a)g(a,z)] \ &+rac{1}{2}\partial_{zz}\left[\sigma^2(z)g(z,a)
ight] \ &-\delta g(z,a) = 0 \end{aligned}$$

