(In)formal Growth: Knowledge Dynamics with Learning Segmentation

Santiago Franco

Jose M. Quintero

Boston University

The University of Chicago

December 12, 2024

The Economics of Informality

Introduction

- ▶ Labor **informality** is a salient feature of many developing economies.
 - ▶ 30% 80% in Latin America, and similar numbers for Asia, Eastern Europe.
- ▶ Formal and informal workers employed in firms within the same industries, products.
- ► Large differences between **formal** and **informal** workers' **wages**.

Research questions

What is the role of human capital in explaining formal/informal wage differences?

How does aggregate human capital determine the size of the informal sector?

What is the aggregate effect of this interaction on growth and welfare?

This Paper: Approach and Findings

- (1) Document new facts on wage dynamics for formal and informal workers.
 - ► A substantial portion of the **formal** wage premium is explained by worker **sorting**.
 - ▶ Formal experience is associated with higher wages, while informal experience is not.
 - ► Formal workers experience higher future wage growth.
- (2) Propose a growth theory with informal labor, worker sorting & knowledge diffusion.
 - ▶ Endogenous **growth**: workers improve their skills by meeting/learning from others.
 - ▶ Learning segmentation: different meeting rates within/across labor markets.
- (3) Evaluate the general equilibrium effects of formalization policies.
 - ► Contrast: carrot policy (↓ cost of formal) vs stick policy (↑ cost of informal).
 - **Crowding out:** both policies \downarrow **growth** by \downarrow quality of interactions most skilled workers.

Literature and Contribution

Empirical Analysis

- (1) Wage Dynamics and Development: Lagakos et al. (2018)
 - ▶ Steeper experience-wage profiles in developed economies.

This paper: differences in wage levels and growth rates for formal/informal workers.

- (2) Effects Informal Labor: Dix-Carneiro et al. (2021), Bobba et al. (2022)
 - ▶ Dynamic models of labor markets with homogeneous workers or time-invariant skills.

This paper: endogenous time-varying heterogeneous skills + dynamic worker sorting.

- (3) Learning and Growth: Lucas & Moll (2014), Perla & Tonetti (2014)
 - ► Endogenous long-run growth driven by interactions/imitation.

This paper: informal labor markets segment learning \longrightarrow long-run growth.

Empirical Analysis

Descriptive Evidence

Data: Chile

- ► Encuesta de Proteccion Social (EPS), 2002 2016:
 - ► Informality rate: 30%.
 - ▶ Longitudinal worker survey: 17K workers, representative of population.
 - ▶ Individual work history: wage, occupation, industry, region, firm size, hours worked.
 - ▶ Demographics: age, education, gender.
 - ▶ Informality: type of contract (salaried workers) and pension contributions.
- ▶ Informal jobs: jobs not complying with labor regulations.
 - (1) All salaried workers must have a formal labor contract.
 - (2) All workers must contribute to pension funds.

Fact 0: Experience-Wage Profiles for Formal and Informal Workers

Fact 1: Large Fraction of Formal Premium Given by Worker's Sorting

$$\log w_{it} = \beta \textbf{Formal}_{it} + \Gamma X_{it} + \delta_i + \varepsilon_{it}$$

$$\frac{\text{Dep. var.: } \log w_{it}}{(1) \quad (2) \quad (3)}$$

$$\text{Formal}_{it}, \beta \qquad 0.396^{***} \quad 0.161^{***} \quad 0.0950^{***} \\ (0.0151) \quad (0.0132) \quad (0.0167)$$

$$\text{Corr}(\textbf{Formal}_{it}, \delta_i) \qquad \qquad 0.168 \\ (0.004)$$

$$\text{Controls} \qquad \checkmark \qquad \checkmark$$

$$\text{Worker FE} \qquad \checkmark$$

$$\text{Observations} \qquad 58,926 \quad 58,926 \quad 58,926$$

$$\text{Adj R-squared} \qquad 0.0746 \quad 0.460 \quad 0.839$$

Controls: age, education, gender, occupation, industry, region, firm size, experience, and time-fixed effects. Standard errors in parentheses clustered at the individual level. ***p<0.01. **p<0.05. *p<0.1.

Empirical Analysis

00000000

Fact 2: ↑ Formal Experience, ↑ Wages - ↑ Informal Experience, ↓ Wages

	Dep. Var.: $\log w_{it}$						
_	(1)	(2)	(3)	(4)			
Formal $_{it}$, eta	0.160*** (0.0132)	0.0948*** (0.0167)	0.0959*** (0.0145)	0.0805*** (0.0176)			
asinh exp	0.0373*** (0.00904)	0.0151 (0.0177)	(* * * *)	(* * * * *)			
asinh \exp^F	,	,	0.0396***	0.0322**			
$asinh\ exp^I$			(0.00583)	(0.0149) -0.0292**			
$Corr(eta \; Formal_{it}, \; \delta_i)$		0.1679 (0.004)	(0.00502)	(0.0138) 0.1044 (0.004)			
Controls	\checkmark	(0.004) ✓	✓	(0.001)			
Worker FE		\checkmark		\checkmark			
Observations	58,926	58,926	58,926	58,926			
Adj R-squared	0.460	0.839	0.463	0.839			

Controls: age, education, gender, occupation, industry, region, firm size, and time-fixed effects. Standard errors in parentheses clustered at the individual level. ***p<0.01. **p<0.05. *p<0.1.

Fact 3: Formal Workers Experience Higher Wage Growth

$$\Delta \log w_{i,t+h} = \alpha + \beta_h \text{Formal}_{it} + \Gamma X_{i,t} + \varepsilon_{i,t}$$

Controls: age, education, gender, occupation, industry, region, firm size, and time-fixed effects and wage decile,

Mechanism: Peer effects

$$\Delta \log w_{i,t+h} = \alpha + \beta_h \bar{w}_{i,t}^- + \Gamma X_{i,t} + \varepsilon_{i,t} \qquad \text{with} \qquad \bar{w}_{i,t}^- = \frac{1}{|\mathcal{N}_i|} \sum_{j \in \mathcal{N}_i} w_{j,t}$$

Controls: age, education, gender, occupation, industry, region, firm size, and time-fixed effects and wage decile. Peers: Region x Year x Industry x Firm Size Bracket.

Empirical Analysis

00000000

Learning Segmentation: Formal Workers have better peers

Empirical Analysis 0000000●

Model

Workers

- ▶ Time is continuous.
- ▶ A unit mass of workers discount future, and exit the labor market at rates ρ , and δ .
 - ▶ Spend their income every period on a final consumption good (no savings).
- \blacktriangleright Workers differ in their skill level z, with G(z,t) CDF of skill distribution at time t.
 - ▶ Initial productivity distribution, G(z,0): Pareto with tail θ , location κ .
 - ▶ Newborn productivity distribution, B(z,t): Pareto with tail θ , location κ_0 .
- ► Workers improve their skills by **learning** from others.
- ► Given their skill level, z, workers decide to work formally or informally.
 - ► Static implication: different wages.
 - ▶ Dynamic implication: different learning opportunities.

Firms

Empirical Analysis

A representative, perfectly competitive firm produces the final consumption good:

$$Y(t) = \int_0^\infty z \left(n_f(z) + n_i(z) \right) dz,$$

- $ightharpoonup n_f(z)$, $n_i(z)$: mass of formal and informal workers with skill level z.
- Differential hiring costs for formal and informal workers with $\varphi_z > 0$, $\varphi_{zz} > 0$:

$$c_f(z,t) = \underbrace{(1+\tau)}_{\text{payroll tax}} w_f(z,t) + \underbrace{F(t)}_{\text{registering}} , \qquad c_i(z,t) = w_i(z,t) + \underbrace{\varphi(z,t)}_{\text{gov. fines}}$$

Equilibrium wages:

$$w_{\mathbf{f}}(z,t) = \frac{1}{1+\sigma}z - \frac{F(t)}{1+\sigma}, \qquad w_{i}(z,t) = z - \varphi(z,t).$$

Learning: Meetings and Technology

- Workers meet other workers at a Poisson rate α .
- Conditional on a meeting, workers in sector ℓ meet workers in ℓ' with probability:

$$\mathbb{P}_{\ell}^{\ell}(t) = \frac{\pi_{\ell}\mu_{\ell}(t)}{(1 - \pi_{\ell})\mu_{-\ell}(t) + \pi_{\ell}\mu_{\ell}(t)}, \qquad \mathbb{P}_{\ell}^{\ell'}(t) = 1 - \mathbb{P}_{\ell}^{\ell}(t), \qquad \boldsymbol{\ell}, \boldsymbol{\ell'} \in \{f, i\},$$

- $\blacktriangleright \mu_{\ell}$: mass of workers in sector ℓ .
- \blacktriangleright $\pi_{\ell} \in [\frac{1}{2}, 1]$: degree of learning segmentation ($\pi_f = \pi_i = 1/2$, random meetings).
- ▶ When worker z(t) meets a worker z'(t), $z(t + \Delta) = \max\{z(t), z'(t)\}$ with probability:

$$\psi\left(\frac{z'(t)}{z(t)}\right) = \begin{cases} 1 & \text{if } z'(t) \leq z(t) \\ \sigma + (1-\sigma)\left(\frac{z'(t)}{z(t)}\right)^{-\xi} & \text{if } z'(t) > z(t) \end{cases}$$

 \bullet $\sigma \in (0,1]$: knowledge diffusion, $\xi > 0$: limits to learning.

Value Functions and Worker Sorting

Empirical Analysis

▶ The value function for a worker in sector $\ell \in \{i, f\}$ satisfies the Bellman equation:

$$(\rho + \delta)V_{\ell}(z, t) = w_{\ell}(z, t) + \dot{V}_{\ell}(z, t)$$

$$+ \alpha \mathbb{P}_{\ell}^{f}(t) \int_{\Omega_{f}(t)} \max \left\{ V(\tilde{z}, t) - V_{\ell}(z, t), 0 \right\} \psi\left(\frac{\tilde{z}}{z}\right) \frac{g(\tilde{z}, t)}{\mu_{f}(t)} d\tilde{z}$$

$$+ \alpha \mathbb{P}_{\ell}^{i}(t) \int_{\Omega_{\ell}(t)} \max \left\{ V(\tilde{z}, t) - V_{\ell}(z, t), 0 \right\} \psi\left(\frac{\tilde{z}}{z}\right) \frac{g(\tilde{z}, t)}{\mu_{i}(t)} d\tilde{z},$$

- $V(z,t) = \max\{V_f(z,t), V_i(z,t)\}.$
- $ightharpoonup \Omega_{\ell}(t)$: support of formal/informal skill distribution.
- **Sorting:** there exists **formality** cutoff $\bar{z}(t)$ such that:

$$V_f(z,t) > V_i(z,t)$$
 for $z > \bar{z}(t)$, $V_f(z,t) < V_i(z,t)$ for $z < \bar{z}(t)$.

Balanced Growth Path Equilibrium with Informality

- ▶ An equilibrium: HJB (V_f, V_i) + KFE q(z, t) + formality cutoff $\overline{z}(t)$.
- Focus on Balanced Growth Path equilibrium: productivity quantiles grow at rate γ .
 - ▶ Relative skill: $x \equiv z(t)e^{-\gamma t}$, with $\bar{x} = \bar{z}(t)e^{-\gamma t}$.
 - ▶ Invariant distribution: $\Phi(x) = G(z,t)$, with $\Phi(\bar{x})$ share of informal workers.
- The share of **informal** workers affects the economy's **growth** rate, γ :

$$\gamma = \alpha \theta \sigma \Big[\begin{array}{c} \underline{\Phi(\bar{x})} \\ \underline{1 - \Phi(\bar{x})} \\ \text{informal/formal} \end{array} \underbrace{\mathbb{P}_{i}^{f}\left(\Phi(\bar{x})\right)}_{\text{prob. informal meets formal meets formal}} + \underbrace{\mathbb{P}_{f}^{f}\left(\Phi(\bar{x})\right)}_{\text{prob. formal meets formal}} \Big] - \underbrace{\delta \theta \left[1 - \frac{\kappa_{0}}{\kappa}\right]}_{\text{newborn skill diff.}}$$

- ▶ Without learning segmentation $(\pi_f = \pi_i = 1/2)$: $\gamma = \alpha\theta\sigma \delta\theta \left[1 \frac{\kappa_0}{\kappa}\right]$.
- Government policies can only generate movements along the growth curve.

Quantitative Analysis

Quantitative Analysis

Model to the Data and Formalization Policies

- ▶ Adopt a functional form for informality cost, $\varphi(z,t) = z + (\exp(-\eta z) 1)/\eta$.
- ▶ 12 parameters: $\underline{\tau, F, \eta}$, $\underline{\alpha, \pi_i, \pi_f, \sigma, \xi}$, $\underline{\theta, \kappa/\kappa_0}$, $\underline{\rho, \delta}$ Distributional Population
 - \triangleright τ , ρ : external calibration, and δ : age's empirical CDF.
 - ▶ Simulated Method of Moments (SMM) for remaining 9 parameters.
 - ▶ Moments: growth, informality share (agg. and by age), formal premium, transition probs.
- ▶ Use the estimated model to evaluate two types of formalization policies:
 - (1) Carrots: decrease the cost of being formal through $\downarrow F$.
 - (2) Sticks: increase the cost of being informal through $\uparrow \eta$ (not today).

Changes in Registering Costs F: Informality and Consumption

Note: the x-axis displays 1% increments around the estimated value of F, from -20% to 20%.

Changes in Registering Costs F: Growth and Welfare

Note: the x-axis displays 1% increments around the estimated value of F, from -20% to 20%.

Decomposing Changes in Growth Rate: Crowding Out Effect

- $ightharpoonup \downarrow F \longrightarrow \downarrow \Phi(\bar{x})$ (informality share). How does this affect the growth rate?
 - lackbox Without learning segmentation, $\pi_i=\pi_f=1/2$, no effect: $\frac{\partial \gamma}{\partial (1-\Phi(\bar{\tau}))}=0$.
 - ▶ But in estimated model has learning segmentation $\pi_i \approx 0.6$ and $\pi_f \approx 0.8$.
- When decreasing F by 20%:

$$\underbrace{\frac{\partial \gamma}{\partial \left(1 - \Phi\left(\bar{x}\right)\right)}}_{\substack{\Delta \text{ growth when formalizing workers}}} = \alpha \theta \sigma \left[\underbrace{\frac{\mathbb{P}_f^f(\bar{x}) - \mathbb{P}_i^f(\bar{x})}{1 - \Phi\left(\bar{x}\right)}}_{\substack{Switchers \\ > 0}} + \underbrace{\Phi\left(\bar{x}\right) \frac{\partial \mathbb{P}_i^f(\bar{x})}{\partial \left(1 - \Phi\left(\bar{x}\right)\right)}}_{\substack{Always \text{ Informal} \\ > 0}} + \underbrace{\left(1 - \Phi\left(\bar{x}\right)\right) \frac{\partial \mathbb{P}_f^f(\bar{x})}{\partial \left(1 - \Phi\left(\bar{x}\right)\right)}}_{\substack{Always \text{ Formal} \\ < 0}}\right]$$

Conclusion

- Documented different wage dynamics for formal and informal workers.
 - \blacktriangleright More skilled workers sort into the formal sector $\longrightarrow \uparrow$ formal wage premium.
 - ► Formal experience: ↑ wages, informal experience ↓ wages.
 - ► Formal workers: ↑ wage growth.
- (2) Proposed a framework emphasizing worker sorting and learning segmentation.
 - ► Labor informality affects long-run growth by segmenting learning environments.
 - **Formalization** policies can lower long-run **growth** by lowering the quality of interactions.
- (3) Implications for policy design (next steps).
 - ► Trade-off: ↑ growth rate vs ↓ inequality.
 - ▶ Learning externalities: efficient benchmark and optimal level of informality.

Thank You!

References

Appendix

Wage-Experience Profiles for Salaried Formal and Informal Workers

Wage-Age Profiles for Formal and Informal Workers

Wage-Age Profiles for Salaried Formal and Informal Workers

Wage-Experience Profiles Formal and Informal Workers (Growth)

Wage-Age Profiles Formal and Informal Workers (Growth)

Fact 1: Formal Premium Given and Worker's Sorting (Salaried)

	Dep. var.: $\log w_{it}$			
	(1)	(2)	(3)	
$Formal_{it}$, eta	0.412***	0.154***	0.0733***	
	(0.0188)	(0.0148)	(0.0201)	
$Corr(eta^*Formal_{it},\ \delta_i)$			0.179	
			(0.005)	
Controls		\checkmark	\checkmark	
Worker FE			\checkmark	
Observations	44,329	44,329	44,329	
Adj R-squared	0.068	0.512	0.863	

Controls: age, education, gender, occupation, industry, region, firm size, experience, and time-fixed effects. Standard errors in parentheses clustered at the individual level. ***p<0.01, **p<0.05, *p<0.1.

Fact 2: \uparrow Formal Experience, \uparrow Wages - \uparrow Informal Experience, \downarrow Wages

	Dep. Var.: $\log w_{it}$			
-	(1)	(2)	(3)	(4)
$Formal_{it},\ eta$	0.135***	0.0720***	0.0828***	0.0605***
	(0.0148)	(0.0201)	(0.0161)	(0.0205)
asinh exp	0.0541***	0.0263	,	,
•	(0.00955)	(0.0181)		
asinh \exp^F	,	,	0.0442***	0.0379**
			(0.00667)	(0.0154)
asinh exp^I			-0.0125**	-0.0187
			(0.00510)	(0.0152)
$Corr(eta \; Formal_{it}, \; \delta_i)$		0.177		0.134
		(0.005)		(0.005)
Controls	\checkmark	✓	\checkmark	✓
Worker FE		\checkmark		\checkmark
Observations	44,329	44,329	44,329	44,329
Adj R-squared	0.515	0.863	0.517	0.863

Fact 3: Formal Workers Experience Higher Future Wage Growth

Fact 3: Formal Workers Experience Higher Future Wage Growth

Fact 3: Formal Workers Experience Higher Future Wage Growth

Fact 3: Transitioning to the formal sector has higher returns

Mechanism: Peer effects

$$\Delta \log w_{i,t+h} = \alpha + \beta_h \bar{w}_{i,t}^- + \Gamma X_{i,t} + \varepsilon_{i,t} \qquad \text{with} \qquad \bar{w}_{i,t}^- = \frac{1}{|\mathcal{N}_i|} \sum_{i \in \mathcal{N}_i} w_{j,t}$$

Controls: age, education, gender, occupation, industry, region, firm size, and time-fixed effects and wage decile.

Learning Segmentation: Formal Workers have better peers

Equilibrium Definition

Given g(z,0), an equilibrium is a trajectory $\bar{z}(t)$ and a tuple of funct. (g,V_f,V_i,V) :

- (1) Given $\bar{z}(t)$: g(z,t) satisfies the Kolmogorov Forward Equation
- (2) Given g and $\bar{z}(t)$: $V_f(z,t)$ and $V_i(z,t)$ satisfy the Bellman equations
- (3) Given V_f and V_i : $\bar{z}(t)$ satisfies the indifference condition and V is given by $\max\{V_i,\,V_f\}$
- (4) The government has a balanced budget

Kolmogorov Forward Equations

▶ The Kolmogorov Forward equation for the distribution of skills for $z \ge \bar{z}(t)$:

$$\begin{split} \frac{\partial g(z,t)}{\partial t} &= -\alpha \lambda_f^f g(z,t) \int_z^\infty k \left(\frac{y}{z}\right) g(y,t) \mathrm{d}y & \text{outflow} \\ &-\alpha \lambda_i^f g(z,t) \int_0^{\bar{z}} k \left(\frac{z}{y}\right) g(y,t) \mathrm{d}y & \text{inflow from informals} \\ &+\alpha \lambda_f^f g(z,t) \int_{\bar{z}}^z k \left(\frac{z}{y}\right) g(y,t) \mathrm{d}y & \text{inflow from formals} \end{split}$$

with $\lambda_{\ell}^{k}(t) \equiv \mathbb{P}_{\ell}^{k}(t)/\mu_{k}(t)$, and for $z < \bar{z}(t)$:

$$\begin{split} \frac{\partial g(z,t)}{\partial t} &= -\alpha \lambda_i^f g(z,t) \int_{\bar{z}}^{\infty} k \left(\frac{y}{z}\right) g(y,t) \mathrm{d}y & \text{outflow} \\ &- \alpha \lambda_i^i g(z,t) \int_{z}^{\bar{z}} k \left(\frac{y}{z}\right) g(y,t) \mathrm{d}y & \text{outflow} \\ &+ \alpha \lambda_i^i g(z,t) \int_{0}^{z} k \left(\frac{z}{y}\right) g(y,t) \mathrm{d}y & \text{inflow from informals} \end{split}$$

Summary Statistics

	(1)	(2)
	Informal	Formal
Fraction of workers	0.29	0.71
Mean real hourly wage	4,655	6,367
Mean weekly working hours	42.4	46
Fraction of male workers	0.58	0.62
Mean experience (years)	15.9	16
Number of observations	35,324	86,857
Number of workers	8,022	13,762

Note: Baseline sample: EPS 2002 - 2016.

Balanced Growth Path Equilibrium

Balanced Growth Path: two scalars γ , \bar{x} and five functions v_f , v_i , v, ϕ , Φ s.t.:

$$V_f(z,t) = e^{\gamma t} v_f(x)$$

$$V_i(z,t) = e^{\gamma t} v_i(x)$$

$$G(z,t) = \Phi(x)$$

$$G(z,t) = \Phi(x)$$

- $ightharpoonup x \equiv ze^{-\gamma t}$ is the time-invariant skill, and $\bar{x} \equiv \bar{z}_t e^{-\gamma t}$ the time-invariant formality cut-off
- $lackbox{(}g,V_f,V_i,V)$ is an equilibrium with initial condition $g(z,0)=\phi(z)$

Estimated Parameters

Parameter	Description	Value
$\overline{\rho}$	Discount Rate	0.05
k	Pareto Location	2
δ	Death Hazard Rate	0.064
σ	Learning Prob.	0.367
α	Meeting Rate	0.323
π_i	Probability of Meeting within Sector (Informals)	0.566
π_f	Probability of Meeting within Sector (Formals)	0.804
κ	Intelectual Range	3.56
θ	Pareto Tail	0.389
k_0/k	Birth Distribution Location	0.09
F	Hiring Costs	0.558
η	Informality Costs	1.168

Goodnes of Fit

	Model	Data
Growth Rate (%)	3.175	4.104
Informality Rate $(\%)$	30.172	18.584
Avg. Formal Premium	0.070	0.060
Informality Rate (%), 15-24	0.212	0.255
Informality Rate (%), 25-34	0.182	0.137
Informality Rate (%), 35-44	0.171	0.159
Informality Rate $(\%)$, 45-54	0.187	0.191
Informality Rate $(\%)$, 55-64	0.236	0.259
Transition Probability - I-F	0.082	0.128
Transition Probability - F-I	0.017	0.018

Growth and Informality

Result 1: Formal wage premium is driven by sorting

$$\log w_{it} = \beta_1 \mathbf{Formal}_{it} + \Gamma X_{it} + \delta_i + \varepsilon_{it}$$

	Log Wage $(\log w_{it})$		
Formal Premium	0.688***	0.367***	0.143***
	(0.026)	(0.023)	(0.037)
Observations	5,347	5347	5,347
Controls	No	Yes	Yes
Worker FE	No	No	Yes

Standard errors in parentheses clustered at the individal level. Controls include occupation, age, region, gender, education, industry, and time fix effects.

Result 3: Formal Workers experience higher Wage Growth

References I

```
Bobba, M., Flabbi, L., & Levy, S. (2022). Labor Market Search, Informality, and Schooling Investments. International Economic Review, 63(1), 211-259. Retrieved 2023-02-08, from
```

https://onlinelibrary.wiley.com/doi/abs/10.1111/iere.12536 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/iere.12536) doi:

10.1111/iere.12536

Dix-Carneiro, R., Goldberg, P. K., Meghir, C., & Ulyssea, G. (2021, January). *Trade and Informality in the Presence of Labor Market Frictions and Regulations* [Working Paper]. National Bureau of Economic Research. Retrieved 2022-11-23, from https://www.nber.org/papers/w28391 doi: 10.3386/w28391

References II

- Lagakos, D., Moll, B., Porzio, T., Qian, N., & Schoellman, T. (2018, April). Life Cycle Wage Growth across Countries. *Journal of Political Economy*, 126(2), 797–849. Retrieved 2023-04-27, from
 - https://www.journals.uchicago.edu/doi/10.1086/696225 (Publisher: The University of Chicago Press) doi: 10.1086/696225
- Lucas, R. E., & Moll, B. (2014, February). Knowledge Growth and the Allocation of Time. Journal of Political Economy, 122(1), 1-51. Retrieved 2023-02-20, from https://www.journals.uchicago.edu/doi/full/10.1086/674363 (Publisher: The University of Chicago Press) doi: 10.1086/674363
- Perla, J., & Tonetti, C. (2014, February). Equilibrium Imitation and Growth. *Journal of Political Economy*, 122(1), 52-76. Retrieved 2023-03-25, from https://www.journals.uchicago.edu/doi/10.1086/674362 doi: 10.1086/674362