Good Firms, Bad Policies:

The Dynamics of Informality and Policy in Shaping Economic Growth

Ufuk Akcigit Y. Emre Akgunduz Harun Alp UChicago Sabanci FRB Seyit M. Cilasun Jose M. Quintero TOBB UChicago

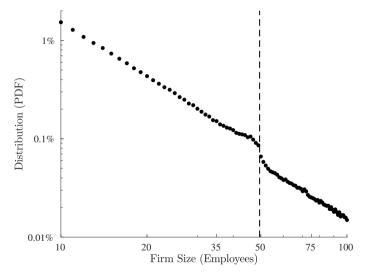
ART Seminar

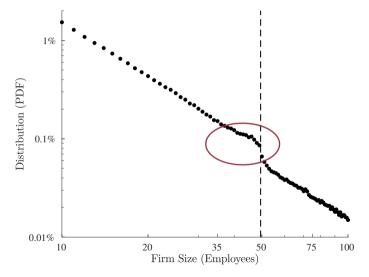
March 9, 2024

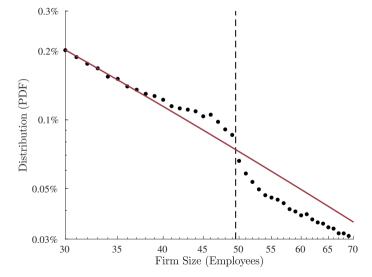
Motivation

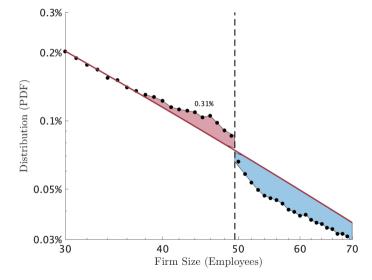
- Regulations are common policy tools
 - Promoting employee protection
 - ② Protection of strategic industries
 - 3 Supporting small firms.
- A particular class of policies: Size-dependent regulations:
 - 1 Slows down firm growth, Aghion et al (2023).
 - 2 Act as a tax for larger firms, Garicano et al (2016).
 - 3 Increase in informal employment, Dabla-Norris et al. (2018).

Research Question

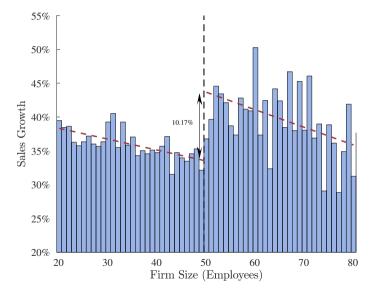

- How do size-dependent policies affect firm dynamics in an economy with an informal sector?
 - Firm growth
 - ② Productivity dynamics
 - Share of informality
- Regulations to firms with over 50 employees in Turkey
 - 4 Hiring disabled workers and ex-victims.
 - ② Health and safety board.
 - 3 Physician, health unit and safety specialist.
 - More frequent government inspection

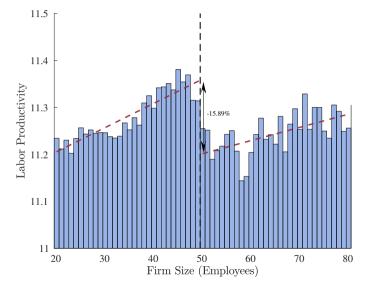

This Paper


- Build a general equilibrium of firm dynamics model with:
 - ① Firm heterogeneity.
 - ② Size-dependent regulations.
 - Informality.
- Calibrate the model to Turkish data.
 - Sales Growth
 - ② Informality
 - 3 Bunching
- Counterfactual exercises.
 - Welfare implications.
 - 2 Role of informality and firm heterogeneity.


Preview of the Results

- Size-dependent policies reduce incentives to grow near the threshold.
 - Mainly affects firms with high growth potential.
 - 2 Lower aggregate productivity growth.
- Firms lean more informality near the policy threshold:
 - Bunching below the policy threshold in the firm size distribution.
 - Permanent loss of mass after policy threshold.
- Size-dependent policies have a negative effects on welfare.
 - 1 Mainly driven by heterogeneity in growth potential.
 - 2 Informality gives firms an alternative to grow and dodge the tax.





Firm Growth

Labor Productivity

Model Overview

- Firms dynamics embedded in endogenous growth a la Klette & Kortum (2004)
 - Firm level investment decision to grow.
 - Competition between incumbents and entrants.
 - Heterogeneity in growth potential.

- Size dependent distortion
 - Extra tax for "large" firms.
- Informality
 - Taxation is avoided through informality.
 - Informality is monitored by the government.

Basic Set-up

• The final good is aggregated with technology:

$$\ln(Y) = \int_0^1 \ln(y_j) dj,$$

- ullet Each intermediate good is produced by a firm with technology, $y_j=q_jl_j$
- Limit pricing: $p_i = mc_{fringe} = \frac{w}{\frac{q_i}{\lambda}}$
- $\bullet \ \, \mathsf{Profits} \,\, \pi = (1 \tfrac{1}{\lambda}) Y$
- Labor $l_j = \frac{1}{\omega \lambda}$, $\omega = \frac{w}{Y}$
- A firm is a collection of products
 - Investment to capture other product lines by improving their productivity.
 - Shrinks due to other firms' investment.

Firms and Regulations

- Firms can have **formal** and **informal** product lines (workers).
 - Pay a tax τ for **formal** product lines.
 - No tax for informal product lines.
- Size dependent tax s: Extra tax for $n_f \geq \bar{n}$.
- ullet The profits of a firm with n_f formal and n_i informal product lines are

$$\Pi(n_i, n_f) = \begin{cases} (1 - \tau)\pi n_f + n_i \pi & \text{if } n_f < \bar{n} \\ (1 - \tau - s)\pi n_f + n_i \pi & \text{if } n_f \ge \bar{n} \end{cases}.$$

- Government auditing for informality.
 - Informal product lines are lost with rate

$$\kappa(n_i, n_f) = \kappa_1 n_i^{\alpha} + \mathbb{1}_{\{n_f \ge \bar{n}\}} \kappa_2 n_i$$

Dynamics

- Firms are heterogeneous in their growth potential $\theta \in \{\theta^h, \theta^l\}$:
 - $\bullet \ \ \mathsf{High} \ \mathsf{efficiency} \Longrightarrow \mathsf{High} \ \mathsf{productivity} \ \mathsf{of} \ \mathsf{expansion}.$
 - θ^h becomes θ^l at a rate ϕ .
 - ullet By spending R (of final good), firm expands at the rate

$$x(\theta) = \theta R^{\eta} (n_i + n_f)^{1-\eta}$$

- Firms dynamics:
 - ① Expands to a new product line at a rate $x_n(\theta^i)$ (endogenous).
 - 2 Choose the new product line as formal/informal.
 - 3 Lose any product line at a rate γ (creative destruction).
 - 4 Lose informal product line at an additional rate

$$\kappa(n_i, n_f) = \kappa_1 n_i^{\alpha} + \mathbb{1}_{\{n_f > \bar{n}\}} \kappa_2 n_i$$

The value function for a firm of type $k \in \{l, h\}$

$$\rho V_k(n_i, n_f) = \max_{x} \left\{ \Pi(n_i, n_f) - N \left[\frac{x}{\theta^k} \right]^{\frac{1}{\eta}} + Nx \left(\max \left\{ V_k(n_i + 1, n_f), V_i(n_i, n_f + 1) \right\} - V_k(n_i, n_f) \right) + \phi \left(V_l(n_i, n_f) - V_h(n_i, n_f) \right) \mathbb{1} \{ k = h \} + n_i \left(\gamma + \kappa(n_i, n_f) \right) \left(V_k(n_i - 1, n_f) - V_k(n_i, n_f) \right) + \gamma n_f \left(V_k(n_i, n_f - 1) - V_k(n_i, n_f) \right) \right\}$$

where $N = n_i + n_f$.

Data

- We use firm level data from Turkey to calibrate the model.
 - ① Entrepreneurship Information System (EIS) data from Turkish Ministry of Industry and Technology.
 - ② Time span 2010-2016.
 - Finance and public sectors are excluded from the EIS.

We use the Labor Force Survey (L.F.S) to get informality estimates.

Identification

Our model has 13 parameters

$$\Omega \equiv \{\underbrace{\tau, s, \kappa_1, \kappa_2, \alpha}_{\text{Regulations}}, \underbrace{\theta^h, \theta^l, \eta, \delta, \theta_E, \phi}_{\text{Firm dynamics}}, \underbrace{\lambda, \rho}_{\text{Macro}}\}.$$

We fix $(\lambda, \rho, \alpha, \eta)$ and calibrate the remaining 9 parameters.

- We target 16 moments in the data.
 - Firm Size Distribution
 - ② Informality

- 3 Bunching
- Sales Growth

Using bunching in calibration

Constrained OLS

$$\ln(\mu(n)) = \beta_0 + \sum_{m=1}^p \beta_m \ln(n)^m + \sum_{m=0}^q \alpha_m \mathbb{1}_{\{n \ge \bar{n}\}} \ln(n)^m + \sum_{m=n^-}^{n-1} \delta_m \mathbb{1}_{\{n=m\}} + \varepsilon.$$

subject to

$$\beta_0 = -\ln\left(\sum_{n=1}^{\infty} \exp\left(\sum_{m=1}^{p} \beta_m \ln(n)^m\right)\right)$$

- Target the coefficients
 - ① $\delta_{\bar{n}-2}$: Bunching.
 - ② $\delta_{\bar{n}-1}$: Bunching.

Calibration

Table (1) Parameters

External Calibration						
Innovation Step Size	λ	1.2	Discount Rate	ρ	0.05	
Convexity of expansion costs	η	0.5	Convexity of confiscation	α	2	
Joint Calibration						
Formality Tax	au	0.14	Size Dependent Tax	s	0.085	
Expansion efficiency (High)	θ^h	0.678	Expansion efficiency (Low)	$ heta^l$	0.394	
Scale of confiscation rate	κ_1	0.01	Constant confiscation rate after threshold	κ_2	0.026	
Share of high types	δ	0.326	Transition between types	ϕ	0.285	
Entry Efficiency	θ_E	0.062				

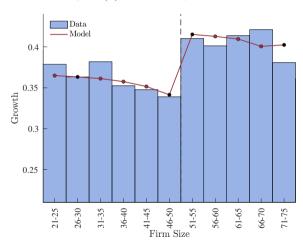

Goodness of fit

Table (2) Moments

	Model	Data	
Share of Informality (%)	22.45	20.00	
Share of Informality (%) (15,24)	17.74	16.83	
Share of Informality (%) (50+)	2.81	5.25	
Bunching (40-44)	0.10	0.13	
Bunching (45-49)	0.12	0.20	
Large Firms $(+50)$	2.50	2.40	
Entry rate (%)	4.50	6.00	
TFP Growth	2.16	2.65	
Sales Growth	See Figure ??		

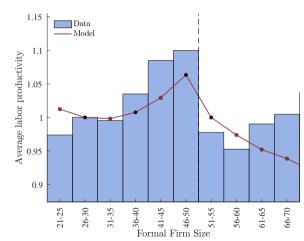
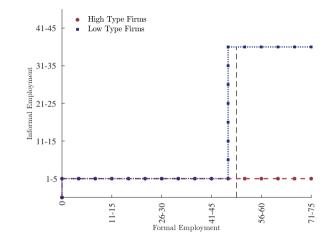
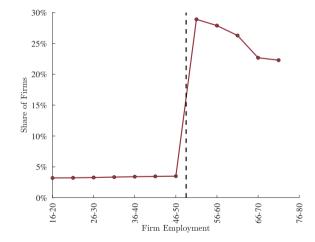
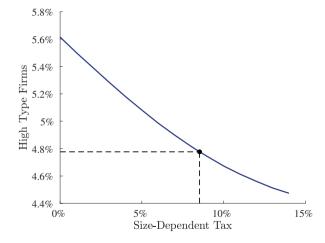

Goodness of fit

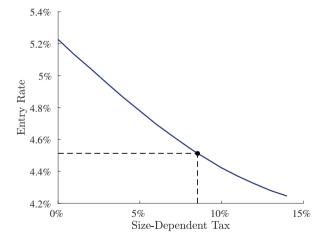
Figure (1) Growth by firm size

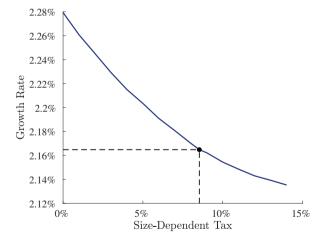


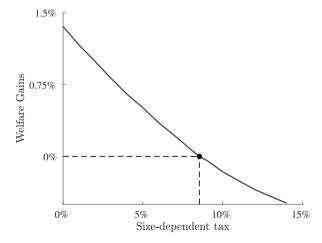
Labor Productivity Non-targeted


Figure (2) Labor Productivity by firm size


Life Cycle


Share of High Type Firms

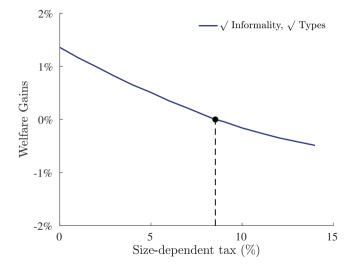

Size-Dependent Policies: Selection

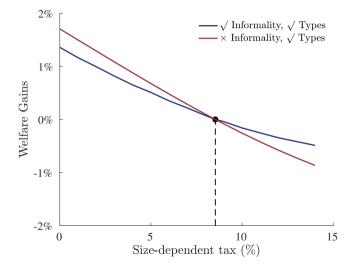


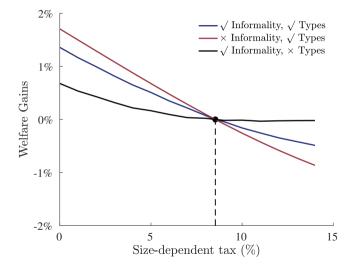
Size-Dependent Policies: Entry

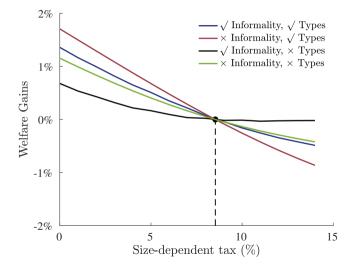
Size-Dependent Policies: Productivity Growth

Taking Stock


Without the size-dependent regulation:


- Share of High Types increases by 18.17%.
- Economic Welfare: increases by 1.4%.
- Share of firms with 50+ workers increases by almost 200%.
- Informality decreases by 23.5%
- Average Expansion Rate
 - 1 Increases by 9.63% for high types
 - ② Decreases by 7.37% for low types


Decomposing the effect of s


• How much of the welfare effect is driven by types?

- What is the role of informality?
 - 1 Is **informality** good for the economy?
 - 2 How does size-dependent policies shape the incentives for informality?

Conclusions

- What are the effects of size-dependent policies on the firm dynamics?
- We build an endogenous growth model with
 - Informality
 - ② Heterogeneous Firms
- Size-dependent policies have negative effects on economic welfare
 - 1 Slows down growth of firms.
 - 2 It tolls mainly firms with high growth potential
 - 3 The effect is even bigger when informality is shut down.
- Size-dependent policies incentives the use of informality for "big firms".

Thank you